Эдс индукции в движущихся проводниках определение. Проводник, движущийся в магнитном поле

Используя определение магнитного поля (5л16) и сводя магнитную силу, действующую на проводник с током, к силам, испытываемым движущимися в нем зарядами, мы получили выражение для силы Лоренца (16л17). Согласно данному нами в лекции 15 определению, сила эта является сторонней (ибо она некулоновская) и должна возникать не только при движении зарядов внутри проводника (т. е. при наличии в нем тока), но и при любых перемещениях самого проводника в магнитном поле (так как при этом движутся и находящиеся в нем заряды). Следовательно, на различных участках такого проводника, вообще говоря, появляются сторонние электродвижущие силы, могущие вызывать электрический ток. Силы эти называются индукционными; для их расчета рассмотрим следующую простейшую схему.

Пусть прямолинейный отрезок цилиндрического проводника l перемещается в однородном магнитном поле B и пусть его скорость v перпендикулярна B и оси проводника (рис. 1). На положительные заряды q внутри будет, очевидно, действовать сила Лоренца, величина которой

Рис. 1.

F л = qvB , (1)

а направление показано на рисунке. На отрицательные заряды сила F л будет действовать в противоположном направлении. Возникающая на участке l ЭДС по определению

e 12 = A 12 = F л l = vBl (2)

и направлена для зарядов обоих знаков вдоль изображенной на рис. 1 F л .

Если представить себе, что отрезок l проводника является частью замкнутой квазилинейной цепи, контур которой изображен на рис. 1 пунктиром, то полученному результату может быть придана следующая форма. Поскольку ,

vBl = = = = , (3)

где DS = l Dx – увеличение площади контура, а DФ = D(BS ) – потока вектора B через него за время Dt . Так как остальные участки Г неподвижны, в них не появляются сторонние силы и, следовательно, полная ЭДС e, действующая вдоль всего контура, также определяется выражением (2). Из рис. 1 видно, что она составляет с направлением B левовинтовую систему. Таким образом, можно написать, что

причем знак минус соответствует установленному нами в предыдущей лекции правилу, связывающему положительное направление обхода контура и положительную нормаль к нему посредством правого винта.

Можно показать, что соотношение (4) справедливо в самом общем случае произвольного движения (включая деформацию) контура в стационарном магнитном поле. Оно выражает собой так называемый закон индукции токов в движущихся проводниках: возникающая в контуре ЭДС индукции равна скорости изменения магнитного потока через контур и составляет с ним (т. е. с изменением) не право- (это означал бы знак «плюс» в (4)), а левовинтовую систему .

Рис. 2.

Замечание 1. В законе индукции (4) речь идет о потоке вектора B через замкнутый контур Г, хотя имеется в виду, конечно, поток его через какую-либо поверхность, опирающуюся на этот контур (ведь именно через поверхность и определяется поток любого вектора). Нетрудно видеть, что произвол в выборе этой поверхности не скажется на величине Ф. Действительно, натягивая на контур Г две произвольные поверхности S 1 и S 2 , мы получим замкнутую поверхность S S , поток вектора B через которую согласно уравнению (9л17) равен нулю. Это значит, что потоки через S 1 и S 2 равны и противоположны, причем по смыслу (9л17) нормали к S 1 и S 2 при этом должны быть направлены наружу, т. е. одна из них образуют с направлением обхода Г правовинтовую, а другая – левовинтовую системы. Меняя направление последней на противоположное (а вместе с ней и знак соответствующего Ф), получаем независимость потока, входящего в (4), от выбора поверхности S .

Замечание 2. При выводе формулы (2) предполагалось, что движущийся в магнитном поле отрезок проводника замкнутой цепи не образует, т. е. в нем ток не течет, хотя полученный в результате ее обобщения закон (4) относится именно к замкнутому проводящему контуру. Посмотрим, к каким эффектам приведет появление тока в рассматриваемом проводнике (рис. 2). Возникновение скорости u упорядоченного движения носителей, направленной вдоль оси проводника, вызовет поворот на некоторый угол a абсолютной скорости v абс зарядов относительно направления движения проводника (т. е. v ). При этом сила Лоренца F л оставаясь всегда перпендикулярной v абс , тоже повернется на угол a относительно оси проводника. Однако величина продольной ее составляющей, создающей ЭДС e 12 ,

F || = F л cos a = qv абс B cos a = qBv

по-прежнему будет определяться формулой (1), так что выражения (2) – (4) останутся справедливыми. Поперечная же составляющая, равная по величине

F ^ = F л sin a = qv абс B sin a = qBu ,

очевидно, представляет собой силу, направленную навстречу движению проводника. На преодоление этой силы (просуммированной по всем движущимся зарядам внутри объема данного проводника) и затрачивается внешняя работа, необходимая для его перемещения в магнитном поле.

Обратив порядок рассуждений, приведенных в предыдущей лекции при выводе соотношения (15л17), получим для этой суммарной силы F ^ S известное выражение (5л16), откуда развиваемая ей механическая мощность

P¢ мех = – F ^ S v = – IBlv .

Мощность же сторонних сил, определяемых продольной составляющей F || , на участке 1–2 проводника в соответствии с (2)

P стр = e 12 I = vBlI

и оказывается равной – P¢ мех . Таким образом,

P¢ мех + P стр = 0,

т. е. полная работа сил магнитного поля (как уже отмечалось ранее) равна нулю. Для поддержания движения проводника внешняя сила, уравновешивающая F ^ S , должна, очевидно, развить мощность

P мех = – P¢ мех = P стр ,

которая и «перейдет» в работу (в единицу времени) действующих внутри него сторонних сил индукции.

Аналогичные явления происходят и при движении в магнитном поле проводника, к концам которого приложена разность потенциалов. Если проводник неподвижен, то ток на участке 1 – 2 (рис. 3) течет только за счет электрических сил. Если же его «отпустить», то под действием магнитной силы появится скорость v и абсолютная скорость носителей v абс отклонится от оси проводника. Тотчас же повернется и сила F л Лоренца и возникнет ее осевая составляющая F || , направленная навстречу току. Она повлечет за собой появление сторонней ЭДС e 21 для компенсации действия которой (т. е. сохранения неизменным тока) источнику необходимо развить дополнительную мощность e 21 I . Повторяя приведенные выше рассуждения, нетрудно показать, что именно эта мощность «выделится» в виде совершенной проводником (в единицу времени) механической работы. Таким образом, и в этом случае полная работа силы Лоренца, конечно, оказывается равной нулю (ибо F л ^ v абс ). Отрицательная часть ее, вызванная F || , компенсируется работой источника тока, положительная же представляет собой полезную работу проводника.

Рис. 3.

ЭДС - это аббревиатура трех слов: электродвижущая сила. ЭДС индукции () появляется в проводящем теле, которое находится в переменном магнитном поле. Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции.

Закон Фарадея для электромагнитной индукции

Основным законом, который используют при расчетах, связанных с электромагнитной индукцией является закон Фарадея. Он говорит о том, что электродвижущая сила электромагнитной индукции в контуре равна по величине и противоположна по знаку скорости изменения магнитного потока () сквозь поверхность, которую ограничивает рассматриваемый контур:

Закон Фарадея (1) записан для системы СИ. Надо учитывать, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки. Если изменение потока происходит равномерно, то ЭДС индукции находят как:

Магнитный поток, который охватывает проводящий контур, может изменяться в связи с разными причинами. Это может быть и изменяющееся во времени магнитное поле и деформация самого контура, и перемещение контура в поле. Полная производная от магнитного потока по времени учитывает действие всех причин.

ЭДС индукции в движущемся проводнике

Допустим, что проводящий контур перемещается в постоянном магнитном поле. ЭДС индукции возникает во всех частях контура, которые пересекают силовые линии магнитного поля. При этом, результирующая ЭДС, появляющаяся в контуре будет равна алгебраической сумме ЭДС каждого участка. Возникновение ЭДС в рассматриваемом случае объясняют тем, что на любой свободный заряд, который движется вместе с проводником в магнитном поле, будет действовать сила Лоренца. При воздействии сил Лоренца заряды движутся и образуют в замкнутом проводнике ток индукции.

Рассмотри случай, когда в однородном магнитном поле находится прямоугольная проводящая рамка (рис.1). Одна сторона рамки может двигаться. Длина этой стороны равна l. Это и будет наш движущийся проводник. Определим, как можно вычислить ЭДС индукции, в нашем проводнике, если он перемещается со скоростью v. Величина индукции магнитного поля равна B. Плоскость рамки перпендикулярна вектору магнитной индукции. Выполняется условие .

ЭДС индукции в рассматриваемом нами контуре будет равна ЭДС, которая возникает только в подвижной его части. В стационарных частях контура в постоянном магнитном поле индукции нет.

Для нахождения ЭДС индукции в рамке воспользуемся основным законом (1). Но для начала определимся с магнитным потоком. По определению поток магнитной индукции равен:

где , так как по условию плоскость рамки перпендикулярна направлению вектора индукции поля, следовательно, нормаль к рамке и вектор индукции параллельны. Площадь, которую ограничивает рамка, выразим следующим образом:

где - расстояние, на которое перемещается движущийся проводник. Подставим выражение (2), с учетом (3) в закон Фарадея, получим:

где v - скорость движения подвижной стороны рамки по оси X.

Если угол между направлением вектора магнитной индукции () и вектором скорости движения проводника () составляет угол , то модуль ЭДС в проводнике можно вычислить при помощи формулы:

Примеры решения задач

ПРИМЕР 1

Задание Получите выражение для определения модуля ЭДС индукции в проводнике, длиной l, который движется в однородном магнитном поле, используя выражение для силы Лоренца. Проводник на рис.2 движется с постоянной скоростью , параллельно самому себе. Вектор перпендикулярен проводнику и составляет угол с направлением .

Решение Рассмотрим силу, с которой магнитное поле действует на заряженную частицу, движущуюся со скоростью , мы получим:

Работа силы Лоренца на пути l составит:

ЭДС индукции можно определить как работу по перемещению единичного положительного заряда:

Ответ

ПРИМЕР 2

Задание Изменение магнитного потока через контур проводника, имеющего сопротивление Ом за время равное с, составило величину Вб. Какова сила тока при этом в проводнике, если изменение магнитного потока можно считать равномерным?
Решение При равномерном изменении магнитного потока основной закон электромагнитной индукции можно записать как:

Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.

На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует сила Лоренца:

Fл = /q/vB sin a

Её направление можно определить по правилу левой руки.

Под действием силы Лоренца внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l
Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.

Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.

Готовимся к проверочной работе!

1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?

2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.

3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?

4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?

5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.

6. Указать правильное направление индукционного тока в контурах.




Электромагнитное поле - Класс!ная физика

Или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются один относительно другого;

  • Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС (взаимоиндукция);
  • Когда изменяющееся магнитное поле индуктирует в енм самом ЭДС (самоиндукция).
  • Таким образом, всякое изменение во времени величины , пронизывающего замкнутый контур (виток, рамку), сопровождается появлением в проводнике индуктированной ЭДС.

    A = U × I × t = I ² × r × t (Дж) .

    Затрачиваемая мощность будет равна:

    P эл = U × I = I ² × r (Вт) ,

    откуда определяем ток в цепи:

    (1)

    Однако нам известно, что проводник с током, помещенный в магнитное поле, будет испытывать силу со стороны поля, стремящуюся перемещать в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные силовые линии поля и в нем по закону электромагнитной индукции возникнет индуктированная ЭДС. Направление этой ЭДС, определенное по правилу правой руки, будет обратным току I . Назовем ее обратной ЭДС E обр. Величина E обр согласно закону электромагнитной индукции будет равна:

    E обр = B × l × v (В) .

    По для замкнутой цепи имеем:

    U - E обр = I × r

    U = E обр + I × r , (2)

    откуда ток в цепи

    (3)

    Сравнивая выражения (1) и (3), видим, что в проводнике, движущемся в магнитном поле, при одних и тех же значениях U и r ток будет меньше, чем при неподвижном проводнике.

    Умножая полученное выражение (2) на I , получим:

    U × I = E обр × I + I ² × r .

    Так как E обр = B × l × v , то

    U × I = B × l × v × I + I ² × r .

    Учитывая, что B × l × I = F и F × v = P мех, имеем:

    U × I = F × v + I ² × r

    P = P мех + P эм.

    Последнее выражение показывает, что при движении проводника с током в магнитном поле мощность источника напряжения преобразуется в тепловую и механическую мощности.

    В металлическом проводнике большое количество свободных электронов, которые хаотично движутся. Если двигать проводник в магнитном поле перпендикулярно силовым линиям, то поле будет отклонять движущиеся вместе с проводником электроны, и они начнут двигаться, то есть возникнет электродвижущая сила (ЭДС) . Это называется электромагнитной индукцией (индуцировать - наводить).

    Под действием ЭДС электроны будут двигаться и скапливаться на одном конце проводника, а на другом будет недостаток электронов, то есть положительный заряд и возникнет разность потенциалов , илиэлектрическое напряжение.

    Если соединить такой проводник с внешней цепью (замкнуть путь), то под влиянием разности потенциалов будет протекать ток.

    Если проводник двигать вдоль силовых линий, то поле на заряды действовать не будет, ЭДС, напряжение не возникнет, ток протекать не будет.

    Такая ЭДС называется ЭДС индукции . Она определяется по закону Фарадея :

    · ЭДС индукции равна произведению скорости перемещения проводника V , магнитной индукции В и активной длины проводника L

    Направление ее определяется по правилу правой руки :

    ·
    Если правую руку расположить в магнитном поле так, что силовые линии будут входить в ладонь, а отогнутый большой палец покажет направление движения проводника, то четыре вытянутых пальца покажут направление ЭДС.

    ЭДС будет наводиться при любом пересечении проводника и магнитного поля. То есть можно двигать проводник, можно поле, а можно магнитное поле изменять.

    Тогда ЭДС определяется по Максвеллу :

    ЭДС, наведенная в контуре в результате пересечения его изменяющимся магнитным потоком, равна скорости изменения этого потока.

    е= - ΔФ/Δt

    Где ΔФ=Ф 1 - Ф 2 изменение магнитного потока, Вб

    Δt – время, за которое изменился магнитный поток, сек.

    Правило Ленца : индуцированная ЭДС имеет такое направление, что созданный ею ток противодействует изменению магнитного потока.

    ЭДС самоиндукции.

    Если в проводнике изменяется ток, изменяется и магнитный поток им созданный. Распространяясь в пространстве, этот магнитный поток пересекает не только соседние проводники, но и свой собственный, а значит, в собственном проводнике наводится ЭДС. Она называется ЭДС самоиндукции .

    ЭДС самоиндукции – это ЭДС, возникающая в проводнике, при изменении собственного тока и магнитного потока.

    Она возникает при всяком изменении тока и направлена так, чтобы не дать ему измениться. При уменьшении тока она направлена вместе с ним и поддерживает ток, при увеличении тока, направлена против, и ослабляет его.

    Способность проводника (катушки) создавать ЭДС самоиндукции, называется индуктивностью L .

    Она зависит от:

    · Квадрата числа витков катушки w

    · магнитной проницаемости µ

    · сечения катушки S

    · длины катушки l

    L=(w 2 μS)/l , Гн(Генри)

    ЭДС самоиндукции:

    e L =-Δi/Δt , В

    Где Δi/Δt – скорость изменения тока.

    Эта ЭДС, препятствуя изменению тока мешает ему протекать, а значит создает сопротивление переменному току.

    Коммутационные перенапряжения.

    Это перенапряжения в цепях с большой индуктивностью при коммутации. В результате может возникнуть электрическая дуга, или искра, оплавляются контакты. Поэтому применяются меры дугогашения.

    Взаимоиндукция.

    ЭДС взаимоиндукции – это ЭДС, возникающая, в катушке при пересечении ее изменяющимся магнитным потоком другой катушки.

    На этом принципе работает трансформатор.

    Наведенное напряжение – это напряжение, возникающее в металлических конструкциях в результате пересечения их с переменным магнитным полем, созданным переменным током.

    Таким образом, за счет магнитного поля возникают три вида ЭДС:

    1. ЭДС индукции . Возникает при движении проводника в постоянном магнитном поле, или при движении поля относительно проводника.

    2. ЭДС самоиндукции . Возникает из-за пересечения проводника собственным изменяющимся магнитным полем.

    3. ЭДС взаимоиндукции . Возникает при пересечении проводника чужим изменяющимся магнитным полем.

    Вихревые токи.

    По другому: токи Фуко, индукционные токи.

    Это токи, возникающие в массивных стальных частях электроустановок (сердечниках, корпусах), из-за пересечения их изменяющимся магнитным потоком и наведения ЭДС. В результате малого сопротивления, возникшие короткозамкнутые токи сильно нагревают машины.

    Потери на вихревые токи – это потери мощности, идущие на нагрев.

    Для снижения потерь уменьшают вихревые токи следующим образом:

    1. Сердечники электромашин выполняют шихтованными, то есть набирают из листов электротехнической стали, изолированных лаком. Тем самым уменьшают сечение, а значит, увеличивают сопротивление току.

    2. В сталь добавляют кремний, обладающий большим сопротивлением.