Деятельность сердца в эмбриональный период собак. Эмбриогенез сердечно-сосудистой системы, особенности кровообращения плода и новорожденного

Миокард и мезотелий эпикарда развиваются из висцерального листка спланхнотома, эндокард, соединительная ткань миокарда и эпикарда - из мезенхимы. Закладка сердца происходит на 3 нед внутриутробного развития, когда в шейном отделе над желточным мешком возникают из мезенхимы два эндокардиальных мешка (рис. 9 ).

Рис.9. Ранние этапы развития сердца куриного эмбриона (а - 25 ч., б - 26 ч., в - 28 ч., г - 29 ч.). 1 - закладка эпикарда, 2 - закладка эндокарда, 3 - закладка миокарда.

Из висцерального листка мезодермы формируются миоэпикардиальные пластинки, которые окружают эндокардиальные мешки. В последующем оба сердечные пузырька смыкаются, их внутренние стенки исчезают, в результате образуется одна двухслойная сердечная трубка (однокамерное сердце), кото-рая соединяется с разви-вающимися кровеносными сосудами. Далее сердечная трубка образует S-образный изгиб и сердце начинает cокращаться. Двух-камерное сердце формируется в результате глубокой пере-тяжки между венозным и артериальным отделами, когда существует один большой круг кровообращения.


Трехкамерное сердце появляется на 4 нед внутриутробного развития при образовании складки, делящей общее предсердие (венозное русло) на два - правое и левое. При этом в перегородке остается отверстие (овальное окно), через которое кровь из правого предсердия переходит в левое. Четырехкамерное сердце формируется на 5 нед внутриутробного развития. В общем желудочке образуется растущая вверх перегородка, разделяющая его на правый и левый. Общий артериальный ствол также делится на два отдела: аорта и легочный ствол, сообщающиеся соответственно с левым и правым желудочками.
Из миоэпикардиальной пластинки дифференцируются веретенообразные клетки - кардиомиобласты, которые быстро устанавливают контакт друг с другом и образуют клеточные тяжи - трабекулы. Таким образом, на ранних этапах онтогенеза формируется "трабекулярный миокард", питание которого обеспечивается кровью из сердечных полостей (пока не развиты питающие кровеносные сосуды). Увеличение массы сердца во внутриутробном развитии идет за счет энергичного размножения кардиомиоцитов митозами и увеличения их размеров, дифференци-ровки сократительного аппарата, увеличения количества митохондрий и других органелл (рис.10 ). Во второй половине внутриутробного развития стенки сердца представлены "компактным миокардом", имеющим значительное количество капилляров.

Проводящая система сердца формируется у плодов на 5 мес ВР, в это время их ЭКГ в основных чертах напоминает таковую у взрослого. Нервных элементов в сердце эмбриона много, причем скорость их дифференцировки выше, чем у мышц.
После рождения проходит длительный период, пока структуры сердца не достигнут дефинитивного состояния. В это время увеличивается масса органа и значительно изменяется его строение. Происходит закрытие овального отверстия и боталлова протока. У новорожденных стенка сердца тонкая, легко растяжимая, эластический аппарат развит слабо. Волокна миокарда тонкие, состоят из мелких клеток (Рис.11 ).

Рис.11. Миокард новорожденного (а) и взрослого (б).

В период после рождения до 2 лет отмечается быстрое увеличение толщины волокон, объема ядер и количества миофибрилл, отчетливой становится их поперечнополосатая исчерченность; волокна миокарда расположены рыхло, соединительной ткани и жировых клеток мало; от 2 до 10 лет происходит дальнейшая дифференцировка и рост сердечной мышцы, увеличивается ее толщина, кардиомиоциты полиплоидизируются; в пубертатном периоде темп изменений вновь нарастает (особенно у девочек): резко увеличивается диаметр волокон, завершается дифференцировка внутриорганных кровеносных сосудов, нервного аппарата и клапанов.

Министерство здравоохранения и социального развития РФ

Государственное бюджетное образовательное учреждение

Высшего профессионального образования

Читинская государственная медицинская академия

УТВЕРЖДАЮ

Зав. кафедрой ________________Клеусова Н.А.

ТЕМА: ФИЛОГЕНЕЗ КРОВЕНОСНОЙ СИСТЕМЫ

методические указания для студентов

лечебного факультета

Составила к.б.н., доцент Ларина Н.П.

Чита-2014

ТЕМА: ФИЛОГЕНЕЗ КРОВЕНОСНОЙ СИСТЕМЫ

Цель : при изучении данной темы формируются компетенции ОК-1, ПК-11 и студент, освоив тему должен

Знать

· основные этапы закладки сердца и магистральных сосудов в подтипе позвоночных

· прогрессивные изменения в этом подтипе, связанные с усложнением в строении сердца, дифференцировки сосудов, отходящих от сердца и увеличение количества гемоглобина в крови

· основные направления эволюции сердечнососудистой системы и гомологию органов

Уметь

· выявить корреляции между филогенезом и пренатальным онтогенезом сердца, так как они могут составлять морфологическую основу клинической симптоматики

Владеть

· знаниями о закономерностях филогенетических преобразований органов сердечнососудистой системы в ряду позвоночных для объяснения процессов формирования органов кровеносной и сосудистой системы в онтогенезе человека и возможных механизмов основных аномалий развития

Задание для самоподготовки

1. Эволюция сердца позвоночных животных

2. Эволюция сосудистой системы позвоночных животных

3. Гомология артериальных жаберных дуг

4. Онтофилогенетические пороки сердечно – сосудистой системы у человека

Эволюция общего плана строения кровеносной системы хордовых. У ланцетника кровеносная система наиболее проста. Круг кровообращения один. По брюшной аорте венозная кровь поступает в приносящие жаберные артерии, которые по количеству соответствуют числу межжаберных перегородок (до 150 пар), где и обогащается кислородом. По выносящим жаберным артериям кровь поступает в корни спинной аорты, расположенные симметрично с двух сторон тела. Они продолжаются как вперед, неся артериальную кровь к головному мозгу, так и назад. Передние ветви этих двух сосудов являются сонными артериями. На уровне заднего конца глотки задние ветви образуют спинную аорту, которая разветвляется на многочисленные артерии, направляющиеся к органам и распадающиеся на капилляры. После тканевого газообмена кровь поступает в парные передние или задние кардинальные вены, расположенные симметрично (рис. 1). Передняя и задняя кардинальные вены с каждой стороны впадают в кювьеров проток. Оба кювьеровых протока впадают с двух сторон в брюшную аорту. От стенок пищеварительной системы венозная кровь оттекает по воротной вене печени в печеночный вырост, где формируется система капилляров. Затем капилляры вновь собираются в венозный сосуд – печеночную вену, по которой кровь поступает в брюшную аорту. Таким образом, несмотря на простоту кровеносной системы в целом, уже у ланцетника имеются основные магистральные артерии, характерные для позвоночных, в том числе для человека: 1) брюшная аорта, преобразующаяся позже в сердце, восходящую часть дуги аорты и корень легочной артерии; 2) спинная аорта, становящаяся позже собственно аортой; 3) сонные артерии. Основные вены, имеющиеся у ланцетника, также сохраняются у более высокоорганизованных животных. Так, передние кардинальные вены станут позже яремными венами, правый кювьеров проток преобразуется в верхнюю полую вену, а левый, сильно редуцировавшись, - в коронарный синус сердца. Для того чтобы понять, как это происходит, необходимо сопоставить кровеносные системы всех классов позвоночных животных.

Рис. 1. Кровеносная система ланцетника. 1 – брюшная аорта; 2 – пульсирующие основания жаберных артерий; 3 – жаберные артерии; 4 – корни спинной аорты; 5 – сонные артерии; 6 – спинная аорта; 7 – кишечная артерия; 8 – кишечная трубка; 9 – воротная пена печени; 10 – печеночная вена; 11 – правая задняя кардинальная вена; 12 – правая передняя кардинальная вена; 13 – правый кювьеров проток.

Более активный образ жизни рыб предполагает более интенсивный метаболизм. В связи с этим на фоне олигомеризации их артериальных жаберных дуг, в конечном счете, до четырех пар - в них отмечается высокая степень дифференцировки: жаберные сосуды распадаются на капилляры, пронизывающие жаберные лепестки (рис. 2). В процессе интенсификации сократительной функции брюшной аорты часть ее преобразовалась в двухкамерное сердце, состоящее из предсердия и желудочка располагающееся под нижней челюстью, рядом с жаберным аппаратом. Имеется один круг кровообращения. В остальном кровеносная система рыб соответствует строению ее у ланцетника.

Рис. 2. Кровеносная система рыб. 1 – венозный синус; 2 – предсердие; 3 – желудочек; 4 – луковица аорты; 5 – брюшная аорта; 6 – жаберные сосуды; 7 – левая сонная артерия; 8 – корни спинной аорты; 9 – левая подключичная артерия; 10 – спинная аорта; 11 – кишечная артерия; 12 – почки; 13 – левая подвздошная артерия; 14 – хвостовая артерия; 15 – хвостовая вена; 16 – правая воротная вена почек; 17 – правая задняя кардинальная вена; 18 – воротная вена печени; 19 – печеночная вена; 20 – правая подключичная вена; 21 – правая передняя кардинальная вена; 22 – правый кювьеров проток.

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. В этой связи у них возникает два круга кровообращения (рис. 60). Соответственно этому в строении сердца и артерий появляются приспособления, направленные на разделение артериальной и венозной крови. Перемещение земноводных в основном за счет парных конечностей, а не хвоста обусловливает изменения в венозной системе задней части туловища. Сердце амфибий расположено каудальнее, чем у рыб, рядом с легкими; оно трехкамерное, но, как и у рыб, от правой половины единственного желудочка начинается единственный сосуд – артериальный конус, разветвляющийся последовательно на три пары сосудов: кожно-легочные артерии, дуги аорты и сонные артерии (рис. 3). Как у всех более высокоорганизованных классов, в правое предсердие впадают вены большого круга, несущие венозную кровь, а в левое – малого круга с артериальной кровью. При сокращении предсердий, в желудочек одновременно попадают обе порции крови, внутренняя стенка которого снабжена большим количеством мышечных перекладин. Полного смешения крови из-за своеобразного строения стенки желудочка не происходит, поэтому при его сокращении первая порция венозной крови поступает в артериальный конус и с помощью спирального клапана, находящегося там, направляется в кожно-легочные артерии. Смешанная кровь из середины желудочка, поступает таким же образом в дуги аорты, а оставшееся небольшое количество артериальной крови, последней попадающей в артериальный конус, направляется в сонные артерии. Две дуги аорты, несущие смешанную кровь, огибают сердце и пищевод сзади, образуя спинную аорту, снабжающую все тело, кроме головы, смешанной кровью. Задние кардинальные вены сильно редуцируются и собирают кровь только с боковых поверхностей туловища. Функционально их замещает возникшая заново задняя полая вена, собирающая кровь в основном из задних конечностей. Она располагается рядом со спинной аортой и, находясь позади печени, вбирает в себя печеночную вену, которая у рыб впадала непосредственно в венозный синус сердца. Передние кардинальные вены, обеспечивая отток крови от головы, называют теперь яремными венами, а кювьеровы потоки, в которые они впадают вместе с подключичными венами, - передними полыми венами.

Рис. 3. Кровеносная система бесхвостых амфибий. 1 – венозный синус; 2 – правое предсердие; 3 – левое предсердие; 4 – желу­дочек; 5 – артериальный конус; 6 – левая легочная артерия; 7 – левая дуга аорты; 8 – сонные артерии; 9 – левая подключичная артерия; 10 – левая кожная артерия; 11 – кишечная артерия; 12 – почки; 13 – левая подвздошная артерия; 14 – правая подвздошная вена; 15 – воротная вена почек; 16 – брюш­ная вена; 17 – воротная вена печени; 18 – печеночная вена; 19 – задняя полая вена; 20 – кожная вена; 21 – правая подключичная вена; 22 – правая яремная вена; 23 – правая передняя полая вена; 24 – легочные вены.

В кровеносной системе пресмыкающихся возникают следующие прогрессивные изменения: в желудочке их сердца имеется неполная перегородка, затрудняющая смешение крови, поступающей из правого и левого предсердий; от сердца отходит не один, а три сосуда, образовавшихся в результате разделения артериального ствола. Из левой половины желудочка начинается правая дуга аорты, несущая артериальную кровь, а из правой - легочная артерия с венозной кровью (рис. 4). Из середины желудочка, в области неполной перегородки, начинается левая дуга аорты со смешанной кровью. Обе дуги аорты, как и у предков, срастаются позади сердца, трахеи и пищевода в спинную аорту, кровь в которой смешанная, но более богата кислородом, чем у земноводных, в связи с тем, что до слияния сосудов только по левой дуге течет смешанная кровь. Кроме того, сонные и подключичные артерии с обеих сторон берут начало от правой дуги аорты, в результате чего артериальной кровью снабжается не только голова, но и передние конечности. В связи с появлением шеи сердце располагается еще более каудально, чем у земноводных. Венозная система пресмыкающихся принципиально не отличается от системы вен земноводных (рис. 4).

Рис. 4. Кровеносная система рептилий (водных черепах и гаттерий). 1 – правое предсердие; 2 – левое предсердие; 3 – левая половина желудочка; 4 – правая половина желудочка; 5 – правая легочная артерия; 6 – правая дуга аорты; 7 – левая дуга аорты; 8 – левый артериальный (боталлов) проток; 9 – левая подключичная артерия; 10 – левая сонная артерия; 11 – кишечная арте­рия; 12 – почки; 13 – левая подвздошная артерия; 14 – хвостовая артерия; 15 – хвостовая вена; 16 – правая бедренная вена; 17 – правая воротная вена почек; 18 – брюшная вена; 19 – воротная вена печени; 20 – печеночная вена; 21 – задняя полая вена; 22 – правая передняя полая вена; 23 – правая подключичная вена; 24 – правая яремная вена; 25 – правая легочная вена.

У животных с четырехкамерным сердцем (птицы и млекопитающие) в ходе эмбрионального развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены. Венозная кровь попадает только в правый желудочек и идет оттуда к легким, артериальная – только в левый желудочек и идет оттуда ко всем прочим органам (рис. 5). Формирование четырехкамерного сердца и полное разделение кругов кровообращения было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных животных потребляют много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом, а не смешанная артериально-венозная, которой довольствуются холоднокровные позвоночные с трехкамерным сердцем.

Рис.5. Кровеносная система млекопитающих. 1 – правое предсердие; 2 – левое предсердие; 3 – правый желудочек; 4 – левый желудочек; 5 – левая легочная артерия; 6 – дуга аорты; 7 – безымянная артерия; 8 – правая подключичная артерия; 9 – правая общая сонная артерия; 10 – левая общая сонная артерия; 11 – левая подключичная артерия; 12 – спинная артерия; 13 – почечная артерия; 14 – левая подвздошная артерия; 15 – правая подвздошная вена; 16 – воротная вена печени; 17 – печеночная вена; 18 – задняя полая вена; 19 – передняя полая вена; 20 – правая подключичная вена; 21 – правая яремная вена; 22 – левая яремная вена; 23 – левая подключичная вена; 24 – верхняя межреберная вена; 25 – безымянная вена; 26 – полунепарная вена; 27 – непарная вена; 28 – легочные вены

Прогрессивные изменения кровеносной системы млекопитающих приводят к полному разделению венозного и артериального кровотоков. Это достигается, во-первых, завершенной четырехкамерностью сердца и, во-вторых, редукцией правой дуги аорты и сохранением только левой, начинающейся от левого желудочка. В результате все органы млекопитающих снабжаются артериальной кровью (рис. 5). В венах большого круга кровообращения также обнаруживаются прогрессивные изменения: возникла безымянная вена, объединяющая левые яремную и подключичную вены с правыми, в результате чего остается лишь одна передняя полая вена, располагающаяся справа (рис. 5).

Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это считается одним из ярких примеров конвергентной (параллельной) эволюции.

Основные этапы эмбриогенеза сердца

Закладка сердца обнаруживается на 3-й неделе эмбрионального развития. Окончательное разделение полостей сердца, формирование клапанов и проводящей системы сердца заканчивается к 8-й неделе и до рождения происходит только увеличение массы и размеров сердца.

Рис. 7. Сравнительная характеристика основных этапов развития сердца позвоночных и эмбриона человека. А – рыбы; б – эмбриона 4–5 мм; в – амфибии; г – эмбриона 6–7 мм; д – рептилий; е – эмбриона 12–15 мм; ж – млекопитающего; з – эмбриона 100 мм. 1 – венозный синус; 2 – общее предсердие; 3 – общий желудочек; 4 – луковица аорты; 5– левое предсердие; 6 – правое предсердие; 7 – межпредсердная перегородка; 8 – левый желудочек; 9 – правый желудочек; 10 – овальное отверстие.

Из висцерального листка мезодермы формируются парные закладки, из которых формируется простое однокамерное трубчатое сердце, расположенное в области шеи. Участки этого сердца растут с неодинаковой быстротой, в результате образуются изгибы и сердце приобретает S-образную форму. Затем задняя часть трубки смещается на спинную сторону и образует предсердие, а из передней части формируется желудочек, т.е. этап развития соответствует двухкамерному сердцу (рис. 7).

На 4-й неделе в предсердиях появляется первичная перегородка, которая сохраняет широкое межпредсердное отверстие. С ней срастается вторичная межпредсердная перегородка, в которой образуется вторичное межпредсердное отверстие – стадия трехкамерного сердца.

В начале 8-й недели в желудочке появляется складка, которая растет вперед и вверх. Ей навстречу за счет клеток атриовентрикулярных подушек растет вырост и вместе они формируют межжелудочковую перегородку, полностью отделяющую правый желудочек от левого. Таким образом, формируется 4-х камерное сердце.

Формирование сердца начинается уже на 2-3-й неделе гестации, когда из парных мезодермальных закладок вследствие их соединения формируется прямая двухстенная трубка, которая постепенно удлиняется и, S-образно изгибаясь, дает начало росту перегородок, в конечном счете разделяющих сердце на левую и правую половины. Полное развитие сердца заканчивается на 8-й неделе гестации, и соответственно порок сердца к этому сроку уже сформирован. Этот факт очень важен для специалистов в области акушерства и гинекологии. Он означает, что никакие вирусные инфекции или другие заболевания беременной, перенесенные в более поздние сроки, не могут служить причиной порока сердца у плода. В то же время вирусные инфекции на поздних сроках беременности могут стать причиной развития у плода миокардита, эндокардита и другой кардиальной патологии.

Во внутриутробном периоде имеющийся у плода порок сердца никак себя не проявляет и не влияет на развитие благодаря особенностям фетального кровообращения. Исключение составляет врожденная недостаточность клапанов или редкий сердечный ритм (<70 в минуту), когда у плода может развиться сердечная недостаточность.

Врожденный порок сердца у плода не служит основанием для родоразрешения при помощи кесарева сечения!

Классификация

Учитывая многообразие врожденных пороков сердца и их возможное сочетание, создание единой классификации затруднено. Есть множество классификаций, разнящихся в зависимости от задач, которые стоят перед исследователями. Наиболее подходящей для аудитории, которой адресовано данное руководство, будет синдромальная классификация врожденных пороков сердца, предложенная А.С. Шарыкиным в 2005 г. Согласно этой классификации, основную врожденную патологию сердечно-сосудистой системы новорожденных можно разделить следующим образом.

1. Врожденные пороки сердца, проявляющиеся артериальной гипоксемией (хроническая гипоксемия, гипоксический приступ, гипоксический статус), - патологии со сниженным легочным кровотоком:

a) вследствие шунтирования венозной крови в системное русло;

b) вследствие уменьшения легочного кровотока;

c) вследствие разобщения малого и большого круга кровообращения;

d) вследствие закрытия открытого артериального протока (ОАП) при дуктусзависимом легочном кровообращении.

2. Врожденные пороки сердца, проявляющиеся сердечной недостаточностью (острая сердечная недостаточность, застойная сердечная недостаточность, кардиогенный шок):

a) вследствие объемной перегрузки;

b) вследствие нагрузки сопротивлением;

c) вследствие поражения миокарда;

d) вследствие закрытия ОАП при дуктусзависимом системном кровообращении.

3. Врожденные пороки сердца, проявляющиеся как сердечной недостаточностью, так и гипоксемией - цианотические пороки с увеличенным легочным кровотоком.

В зависимости от влияния функции ОАП на гемодинамику критические ВПС можно разделить на дуктусзависимые и дуктуснезависимые. В случае когда открытый артериальный проток (дуктус) является основным источником поступления крови в аорту или легочную артерию, можно говорить о дуктусзависимом характере кровообращения. При такой зависимости закрытие ОАП приводит к быстрому ухудшению состояния и часто к гибели пациента.

Дуктусзависимые ВПС можно разделить на:

▪ пороки с дуктусзависимым системным кровотоком (критическая коарктация аорты, перерыв дуги аорты, синдром гипоплазии левых отделов сердца, критический клапанный стеноз аорты) - направление сброса крови через ОАП справа налево (из легочной артерии в аорту);

▪ пороки с дуктусзависимым легочным кровотоком (атрезия легочной артерии, критический клапанный стеноз легочной артерии, транспозиция магистральных артерий) - направление сброса крови через ОАП слева направо (из аорты в легочную артерию).

При дуктуснезависимых ВПС функционирующий ОАП может ухудшать состояние гемодинамики, но он не является ведущим в течении и исходе заболевания. К таким порокам относят: дефект межпредсердной перегородки, дефект межжелудочковой перегородки, общий артериальный ствол, атриовентрикулярный канал, аномалию Эбштейна и др.

Диагностика

Антенатальная диагностика

Поскольку ВПС у плода закладываются сравнительно рано, есть возможность выполнять диагностику еще в пренатальном периоде. Применительно к фетальной эхокардиографии следует различать понятия "выявляемость" и "точная топическая диагностика". Обычно неблагополучие в состоянии сердца плода обнаруживают акушеры-гинекологи, которые редко исследуют выводные отделы желудочков или магистральные сосуды, а ограничиваются проекцией четырех камер сердца. В результате такие пороки, как коарктация аорты, перерыв дуги аорты, транспозиция магистральных артерий, диагностируют лишь в 4% случаев. Специальные тренировочные программы позволяют повысить долю выявляемости почти вдвое. Антенатально успешно диагностируют преимущественно сложные пороки, а общая выявляемость составляет не более 25-27%. Только при двукратно или троекратноповторенном в течение беременности исследовании можно достичь показателя 55%. Результаты улучшаются по мере накопления опыта и распространения УЗИ, приближаясь к 100% в учреждениях, имеющих специалистов по пренатальной кардиологии.

В целом, антенатальная диагностика ВПС помогает специалистам поддерживать стабильную фетальную гемодинамику, проводя необходимую и своевременную медикаментозную коррекцию, а также концентрировать рожениц в городах с кардиохирургическими центрами. Это позволяет снизить риск развития критического состояния ребенка в раннем неонатальном периоде и создает благоприятный фон для оперативного лечения ВПС. Растет количества операций, выполняемых недоношенным и маловесным (менее 2,5 кг) детям.

Постнатальная диагностика

В периоде новорожденности диагностика базируется на физикальном обследовании, ЭКГ, рентгенографии грудной клетки, пульсоксиметрии, эхокардиографии. Кроме того, требуются анализы крови, позволяющие оценить степень нарушения метаболизма организма. Диагностическая ценность разных методов связана с теми задачами, которые перед ними ставят. Не следует, например, ожидать от рентгенограммы точного диагноза порока, однако его последствия (гипер- или гиповолемия малого круга кровообращения, ателектаз, дилатация сердца) могут быть диагностированы быстро и точно. С другой стороны, простое измерение артериального давления на верхних и нижних конечностях позволяет в большинстве случаев поставить диагноз коарктации аорты и аномально отходящих подключичных артерий.

В роддоме, как правило, ограничиваются физикальным обследованием. При этом, помимо диагностики общесоматических заболеваний или врожденных пороков развития, впервые осматривающий ребенка неонатолог или кардиолог должен быть внимательным к признакам патологии сердечно-сосудистой системы.

Внимание обычно привлекают следующие симптомы:

▪ центральный цианоз с рождения или возникший через некоторое время после рождения;

▪ стойкая тахикардия или брадикардия, не связанная с какой-либо соматической патологией новорожденного; ослабленный или значительно усиленный периферический пульс;

▪ тахипноэ, в том числе во сне;

▪ изменения в поведении новорожденного (беспокойство или заторможенность, отказ от еды);

▪ олигурия, задержка жидкости.

Поскольку указанные симптомы могут сопровождать другие заболевания новорожденных, необходимо провести осмотр, аускультацию и измерение артериального давления, чтобы выявить отклонения в функционировании сердечно-сосудистой системы ребенка.

Для улучшения раннего распознавания патологии сердца и предотвращения быстрого ухудшения состояния нужно внедрить скрининговое исследование новорожденных уже в родильных учреждениях. Наиболее простое -двузонная пульсоксиметрия , позволяющая осуществлять контроль сатурации крови кислородом в зонах кровоснабжения выше и ниже ОАП. Чувствительность этого метода составляет 65%, а специфичность - 99%. Он особенно эффективно выявляет потенциально цианотические пороки.

Ценным исследованием является аускультация сердца в динамике. Эта методика особенно важна в диагностике пороков с шунтированием крови слева направо, когда по мере снижения общего легочного сопротивления происходит нарастание шума.

Топическая диагностика

Как известно, топическую диагностику можно выполнять еще на антенатальном этапе. Однако доля обнаруженной патологии остается незначительной, поэтому основной объем диагностики приходится на первые недели жизни детей.

Наиболее точна и безопасна эхокардиография в М- и В-режимах с оценкой спектра скоростей кровотока в сердце методами импульсной непрерывноволновой допплерографии и цветовым картированием кровотока. Основные оцениваемые параметры здесь следующие:

▪ положение сердца и его верхушки;

▪ анатомические характеристики всех отделов сердца (предсердий, желудочков, магистральных сосудов, их величины и взаимоотношений);

▪ состояние атриовентрикулярных и полулунных клапанов (атрезия, дисплазия, стеноз, недостаточность);

▪ локализация, размер и количество дефектов межпредсердной и межжелудочковой перегородки;

▪ величина и направление сбросов крови;

▪ нарушения систолической и диастолической функции сердца (ударный объем и сердечный индекс, фракция выброса, фракция укорочения, трансмитральный и транстрикуспидальный диастолический кровоток, легочный и системный кровоток, давление в полостях сердца и легочной артерии и пр.).

Кроме того, эхокардиография позволяет надежно определять проходимость ОАП у недоношенных детей, поскольку эхокардиографические признаки большого лево-правого шунтирования, как правило, на 1-7 дней предшествуют клиническим признакам. С другой стороны, после естественного или медикаментозного закрытия ОАП может оставаться шум из-за сужения легочной артерии в месте впадения протока. В этом случае эхокардиография позволяет подтвердить облитерацию ОАП и прекратить лечение индометацином.

Важным методом остается катетеризация сердца с ангиокардиографией, выявляющая патологию, недоступнуюэхокардиографии (в дистальных сегментах легочной артерии, ветвях аорты и т.п.), а также позволяющая выполнять точные измерения давления и сатурации крови в полостях сердца. Однако, учитывая инвазивный характер данного исследования, его следует с осторожностью применять у младенцев, находящихся в критическом состоянии.

Среди других методов можно назвать МРТ, КТ, позитронно-эмиссионную томографию и сцинтиграфию миокарда, но их доля среди всех методов пока еще незначительна. Это связано с высокой стоимостью, сложностью методов и необходимостью длительного обездвиживания младенцев. Правда, сейчас эти методики применяют значительно чаще.

Таким образом, можно отметить сравнительно ограниченный арсенал диагностических методов, применяемых в периоде новорожденности, недостаточную эффективность одних только клинических методов и высокую ответственность врачей, проводящих эту диагностику на первичном этапе.

Исследование морфогенеза сердца и становление формы органа на ранних этапах развития является не только теоретической, но и большой практической проблемой. Знание динамики развития органов и структурных особенностей в различные сроки пренатального периода позволяют врачу скорригировать патологию развития .

Уже на ранних стадиях кардиогенеза морфогенетические особенности в строении сердечной стенки имели следующие характеристики. Стенка предсердия характеризовалась достаточно интенсивным сближением эндотелия и миокарда, что в свою очередь сопровождалось быстрой и полной редукцией кардиогеля в этой области. Миокард состоит из рыхло расположенных полигональных или веретенообразных миобластов, которые образуют слой толщиной в 2-3 клетки. Стенка желудочка формировалась с частичным сохранением кардиогеля, что приводило к рыхлому соединению эндотелиального слоя с миокардом, образованию многочисленных трабекул с остатками кардиогеля между этими тканями. Между первичным предсердием и желудочком формируется атриовентрикулярный канал. В результате сохранения кардиогеля между слоями первичной сердечной трубки в этом отделе начинают формироваться так называемые эндокардиальные подушки - складки эндокарда, заполненные кардиогелем и обращенные в просвет сердечной трубки. Сначала образуется две эндокардиальные подушки (передне-верхняя и задне-нижняя), а позже на боковых поверхностях атриовентрикулярного канала формируется еще две латеральные эндокардиальные подушки, размеры которых значительно меньше.

Сохранение кардиогеля является характерной чертой и для конусно-стволовой области (конотрункус). Здесь кардиогель формирует так называемые эндокардиальные гребни, которые в дальнейшем активно участвуют в разделении конотрункуса на аорту и легочный ствол. Таким образом, уже на самых ранних этапах кардиогенеза, морфогенетические особенности в строении сердечной стенки выражены неоднородно, а сохранение остатков кардиогеля в некоторых сегментах эмбрионального сердца говорит о его прямом участии в механизмах септации. В результате процессов эпителиально-мезенхимных превращений в области эндокардиальных подушек постепенно происходит заполнение пространства подушек мезенхимными клетками. Миокард желудочков в этот период представлен компактным слоем пучков кардиомиоцитов, но в его толще происходят процессы расслоения (деляминации) мышечных пучков и образования пространства (деляминационной щели) таким образом, что до конца 6-го неделе эмбриогенеза весь миокард атриовентрикулярного канала разделен на 2 части. В результате процесса деляминации от стенки атриовентрикулярного канала отделяется так называемая деляминационная пластинка, которая несет на себе эндокардиальные подушки.

Нами было установлено, что материал эндокардиальных подушек используется для формирования клапанного аппарата сердца (атриовентрикулярных и полулунных клапанов сердца), мезенхимной первичной межпредсердной перегородки и перепончатой части межжелудочковой перегородки, атриовентрикулярного канала. Первичная межжелудочковая перегородка растет интенсивно, вследствие чего размер межжелудочкового отверстия значительно уменьшается. На 8-й неделе эмбриогенеза сформирована нижняя треть межжелудочковой перегородки. Она формируется трабекулами апикальной части стенки желудочка и достаточно хорошо выражена. До конца 8-ой недели начинается формирование перепончатой части межжелудочковой перегородки за счет соединительной ткани, которая представлена мезенхимными клетками эндокардиальных подушек атриовентрикулярного канала и конотрункуса. Первичная межпредсердная перегородка по происхождению является мезенхимной и связана с мезенхимой эндокардиальных подушек атриовентрикулярного канала. К 8-ой неделе пренатального онтогенеза происходит формирование вторичной межпредсердной перегородки, которая имеет мышечное происхождение и схожа по строению со стенкой предсердия. По окончании роста вторичной перегородки остается овальное отверстие. Когда верхняя часть первичной перегородки постепенно редуцируется, остаточная часть ее становится заслонкой овального отверстия.

В ранний плодный период продолжаются морфогенетические особенности строения как отдельных структурных компонентов стенки сердца человека, так и сердца в целом. На 9-12-ой неделе пренатального развития в миокарде сердца человека выразительно оказываются три клеточные слои (трабекулярний, губчатый и компактный), что различается характером компоновки кардиомиоцитов. В это же время деляминационной пластинки, уже не существует, она разделяется на отдельные мускульные тяжи, покрытые эндокардом, образовывая сосцевидные мышцы. Верхушка первичной сосцевидной мышцы непосредственно переходит в створку клапана, которая к 19-й неделе развития превратится в сухожильную нить. Миокард стенки предсердия представлен миоцитами компактного слоя, который в этот период, образует продольные мускульные пучки, ориентированные на протяжении стенки предсердия с наличием узких межмышечных пространств, заполненных соединительной тканью, разных за величиной, что свидетельствует о разной степени компактизации миокарда стенки предсердия. Миокард стенки желудочков представлен, главным образом, клетками компактного слоя. В этот период развития в стенке миокарда определялись группы мышечных волокон, которые различаются по своей ориентации. Общим является трехслойность его строения, причем как в правом, так и в левом желудочке направления волокон имеют одинаковый характер: внутренний и наружный - продольный, средний - циркулярный.

В стенке предсердий в этот период особые изменения затрагивают левое и правое ушки. В стенке правого ушка происходит формирование трабекул четко отграниченных друг от друга, в отличие от стенки левого ушка, где процессы дифференцировки отстают во времени, что объясняет более развитую мышечную часть стенки правого ушка в последующих возрастных группах и в постнатальном онтогенезе.

Таким образом, морфогенетические особенности в эмбриональный и ранний плодный периоды кардиогенеза выражены неоднородно. Характеристика отдельных структурных компонентов морфогенеза сердца позволяет уточнить их участие в механизме септации,а также сформировать представление о тех периодах повышенной чувствительности эмбриона и плода, когда развиваются и дифференцируются не только отдельные компоненты стенки сердца, но и сердце в целом.

Сердце человека начинает развиваться очень рано (на 17-й день внутриутробного развития) из двух мезенхимных закладок, которые превращаются в трубки. Эти трубки затем сливаются в непарное простое трубчатое сердце, расположенное в области шеи, которое кпереди переходит в примитивную луковицу сердца, а кзади - в расширенный венозный синус. Его передний отдел артериальный, задний - венозный. Быстрый рост фиксированного среднего отдела трубки приводит к тому, что сердце изгибается S-образно. В нем выделяют предсердие, венозный синус, желудочек и луковицу с артериальным стволом. На внешней поверхности сигмовидного сердца появляются предсердно-желудочковая борозда (будущая венечная борозда дефинитивного сердца) и луковично-желудочковая борозда, которая после слияния луковицы с артериальным стволом исчезает. Предсердие сообщается с желудочком узким предсердно-желудочковым (ушковидным) каналом. В его стенках и у начала артериального ствола образуются валики эндокарда, из которых формируются атрио- вентрикулярные клапаны, клапаны аорты и легочного ствола. Общее предсердие быстро растет, охватывает сзади артериальный ствол, с которым к этому времени сливается примитивная луковица сердца. По обеим сторонам артериального ствола спереди видны два выпячивания - закладки правого и левого ушек. На 4-й неделе появляется межпредсердная перегородка, она растет вниз, разделяя предсердия. Верхняя часть этой перегородки прорывается, образуя межпредсердное (овальное) отверстие . На 8-й неделе начинают формироваться межжелудочковая перегородка и перегородка, разделяющая артериальный ствол на легочный ствол и аорту. Сердце становится четырехкамерным. Венозный синус сердца сужается, превращаясь вместе с редуцировавшейся левой общей кардинальной веной в венечный синус сердца, который впадает в правое предсердие.