Объектив с исправленной сферической аберрацией. Сферическая аберрация в объективах

Возникновение этой погрешности можно проследить с помощью легко доступных опытов. Возьмем простую собирающую линзу 1 (например, плосковыпуклую линзу) по возможности с большим диаметром и малым фокусным расстоянием. Небольшой и в то же время достаточно яркий источник света можно получить, если, просверлив в большом экране 2 отверстие диаметром около , укрепить перед ним кусочек матового стекла 3, освещенного сильной лампой с небольшого расстояния. Еще лучше сконцентрировать на матовом стекле свет от дугового фонаря. Эта «светящаяся точка» должна быть расположена на главной оптической оси линзы (рис. 228, а).

Рис. 228. Экспериментальное изучение сферической аберрации: а) линза, на которую падает широкий пучок, дает расплывчатое изображение; б) центральная зона линзы дает хорошее резкое изображение

С помощью указанной линзы, на которую падают широкие световые пучки, не удается получить резкое изображение источника. Как бы мы ни перемещали экран 4, на нем получается довольно расплывчатое изображение. Но если ограничить пучки, падающие на линзу, поставив перед ней кусок картона 5 с небольшим отверстием против центральной части (рис. 228, б), то изображение значительно улучшится: можно найти такое положение экрана 4, что изображение источника на нем будет достаточно резким. Это наблюдение вполне согласуется с тем, что нам известно относительно изображения, получаемого в линзе с помощью узких приосевых пучков (ср. §89).

Рис. 229. Экран с отверстиями для изучения сферической аберрации

Заменим теперь картон с центральным отверстием куском картона с небольшими отверстиями, расположенными вдоль диаметра линзы (рис. 229). Ход лучей, проходящих через эти отверстия, можно проследить, если слегка задымить воздух за линзой. Мы обнаружим, что лучи, проходящие через отверстия, расположенные на различном расстоянии от центра линзы, пересекаются в разных точках: чем дальше от оси линзы выходит луч, тем сильнее он преломляется и тем ближе к линзе находится точка его пресечения с осью.

Таким образом, наши опыты показывают, что лучи, проходящие через отдельные зоны линзы, расположенные на разных расстояниях от оси, дают изображения источника, лежащие на разных расстояниях от линзы. При данном положении экрана разные зоны линзы дадут на нем: одни - более резкие, другие - более расплывчатые изображения источника, которые сольются в светлый кружок. В результате линза большого диаметра дает изображение точечного источника не в виде точки, а в виде расплывчатого светлого пятнышка.

Итак, при использовании широких световых пучков мы не получаем точечного изображения даже в том случае, когда источник расположен на главной оси. Эта погрешность оптических систем называется сферической аберрацией.

Рис. 230. Возникновение сферической аберрации. Лучи, выходящие из линзы на разной высоте над осью, дают изображения точки в разных точках

Для простых отрицательных линз благодаря сферической аберрации фокусное расстояние лучей, проходящих через центральную зону линзы, также будет более значительным, чем для лучей, проходящих через периферическую зону. Другими словами, параллельный пучок, проходя через центральную зону рассеивающей линзы, становится менее расходящимся, чем пучок, идущий через наружные зоны. Заставив свет после собирающей линзы пройти через рассеивающую, мы увеличим фокусное расстояние. Это увеличение будет, однако, менее значительным для центральных лучей, чем для лучей периферических (рис. 231).

Рис. 231. Сферическая аберрация: а) в собирающей линзе; б) в рассеивающей линзе

Таким образом, более длинное фокусное расстояние собирающей линзы, соответствующее центральным лучам, увеличится в меньшей степени, чем более короткое фокусное расстояние периферических лучей. Следовательно, рассеивающая линза благодаря своей сферической аберрации выравнивает различие фокусных расстояний центральных и периферических лучей, обусловленное сферической аберрацией собирающей линзы. Правильно рассчитав комбинацию собирающей и рассеивающей линз, мы можем столь полно осуществить это выравнивание, что сферическая аберрация системы из двух линз: будет практически сведена к нулю (рис 232). Обычно обе простые линзы склеиваются (рис. 233).

Рис. 232. Исправление сферической аберрации путем комбинирования собирающей и рассеивающей линз

Рис. 233. Склеенный астрономический объектив, исправленный на сферическую аберрацию

Из сказанного видно, что уничтожение сферической аберрации осуществляется комбинацией двух частей системы сферические аберрации которых взаимно компенсируют друг друга. Аналогичным образом мы поступаем и при исправлении других недостатков системы.

Примером оптической системы с устраненной сферической аберрацией могут служить астрономические объективы. Если звезда находится на оси объектива, то ее изображение практически не искажено аберрацией, хотя диаметр объектива может достигать нескольких десятков сантиметров.

Идеальных вещей не существует... Не существует и идеального объектива - объектива, способного строить изображение бесконечно малой точки в виде бесконечно малой точки. Виной тому - сферическая аберрация .

Сферическая аберрация - искажение, возникающее из-за разности фокусов для лучей, проходящих на разных расстояних от оптической оси. В отличие от описанных ранее комы и астигматизма, это искажение не является ассиметричным и приводит к равномерному расхождению лучей от точечного источника света.

Сферическая аберрация присуща в разной степени всем объективам, за немногим исключением (одно известное мне - Эра-12, у нее резкость в большей мере ограничена хроматизмом) именно это искажение ограничивает резкость объектива на открытой диафрагме.

Схема 1 (Википедия). Появление сферической аберрации

Сферическая аберрация имеет много лиц - иногда ее величают благородным "софтом", иногда - низкопробным "мылом", она в большей мере формирует боке объектива. Благодар ей Триоплан 100/2.8 - генератор пузырей, а Новый Петцваль Ломографического общества имеет контроль размытия... Впрочем, обо всем по порядку.

Как проявляется сферическая аберрация на снимке

Наиболее очевидным проявлением является нерезкость контуров объекта в зоне резкости ("свечение контуров", "софт-эффект"), скрадывание мелких деталей, ощущение дефокусировки ("мыло" - в тяжелых случаях);

Пример сферической аберрации (софт) на снимке, выполненном на Индустар-26М от ФЭД, F/2.8

Гораздо менее очевидным является проявление сферической аберрации в боке объектива. В зависимости от знака, степени исправления и пр. сферическая аберрация может формировать различные кружки нерезкости.

Пример снимка на Триплет 78/2.8 (F/2.8) - кружки нерезкости имеют яркую кайму и светлый центр - объектив имеет большую величину сферической аберрации

Пример снимка на апланат КО-120М 120/1.8 (F/1.8) - кружок нерезкости имеет слабо выраженную кайму, но она таки есть. У объектива, судя по тестам (опубликованы мною ранее в иной статье) - сферическая аберрация невелика

И, как пример объектива, у которого величина сферической аберрации несказанно мала - снимок на Эра-12 125/4 (F/4). Кружок вообще лишен каймы, распределение яркости очень ровное. Это говорит о превосходной коррекции объектива (что действительно правда).

Устранение сферической абберации

Основной способ - диафрагмирование. Отсекание "лишних" пучков позволяет хорошо поднимать резкость.

Схема 2 (Википедия) - уменьшение сферической аберрации с помощью диарфамы (1 рис.) и с помощью дефокусировки (2 рис.). Способ дефокусировки обычно не подходит для фотографии.

Примеры фотографий миры (вырезан центр) на разных диафрагмах - 2.8, 4, 5.6 и 8, выполненнах с помощью объектива Индустар-61 (ранний, ФЭД).

F/2.8 - заматен довольно сильный софт

F/4 - софт уменьшился, улучшилась детализация снимка

F/5.6 - софт практически отутствует

F/8 - софт отсутствует, хорошо видны мелкие детали

В графических редакторах можно использовать функции повышения резкости и удаления размытия, что позволяет несколько уменьшить негативный эффект сферической аберрации.

Иногда сферическая аберрация возникает из-за неисправности объектива. Обычно - нарушения промежутков между линзами. Помогает юстировка.

Например, есть подозрение, что при пересчете Юпитер-9 на ЛЗОС пошло что-то не так: в сравнении с Юпитер-9 производства КМЗ, резкость у ЛЗОС просто отсутствует из-а огромной сферической аберрации. Де-факто - объективы отличаются абсолютно всем,кроме циферок 85/2. Белый может биться с Canon 85/1.8 USM, а черный - разве что с Триплетом 78/2.8 и софт-объективами.

Снимок на черный Юпитер-9 80-х годов, ЛЗОС (F/2)

Снимок на белый Юпитер-9 1959 г., КМЗ (F/2)

Отношение к сферической аберрации фотографа

Сферическая аберрация снижает резкость снимка и иногда неприятна - кажется, что объект не в фокусе. Не следует в обычной съемке использовать оптику с повышенной сфрической аберрацией.

Однако сферическая аберрация - неотъемлемая часть рисунка обеъктива. Без нее не было бы красивых мягких портретов на Таир-11, сумасшедших сказочных моноклевых пейзажей, пузырчатого боке знаменитого Meyer Trioplan, "гороха" Индустара-26М и "объемных" кружков в виде кошачьего глаза у Zeiss Planar 50/1.7. Не стоит пытаться избавиться от сферической аберрации в объективах - стоит пытаться найти ей применение. Хотя, конечно, избыточная сферическая аберрация в большинстве случаев ничего хорошего не несет.

Выводы

В статье мы подробно разобрали влияние сферической аберрации на фотографию: на резкость, боке, эстетичность и пр.

Сферическая аберрация ()

Если все коэффициенты, за исключением В, равны нулю, то (8) принимает вид

Аберрационные кривые в этом случае имеют форму концентрических окружностей, центры которых расположены в точке параксиального изображения, а радиусы пропорциональны третьей степени радиуса зоны, но не зависят от положения () предмета в зоне зрения. Такой дефект изображения называется сферической аберрацией.

Сферическая аберрация, будучи независимой от искажает как осевые, так и внеосевые точки изображения. Лучи, выходящие из осевой точки предмета и составляющие существенные углы с осью, пересекут её в точках, лежащих перед параксиальным фокусом или за ним (рис. 5.4). Точка, в которой пересекаются с осью лучи от края диафрагмы, назывался краевым фокусом. Если экран в области изображения помещен под прямым углом к оси, то существует такое положение экрана, при котором круглое пятно изображения на нем минимально; это минимальное «изображение» называется наименьшим кружком рассеяния.

Кома ()

Аберрация, характеризующаяся отличным от нуля коэффициентом F, называется комой. Компоненты лучевой аберрации в этом случае имеют, согласно (8). вид

Как мы видим, при фиксированных и радиусе зоны точка, (см. рис. 2.1) при изменении от 0 до дважды описывает в плоскости изображения окружность. Радиус окружности равен, а её центр находится на расстоянии от параксиального фокуса в сторону отрицательных значений у . Следовательно, эта окружность касается двух прямых, проходящих через параксиальное изображение, и составляющих с осью у углы в 30°. Если прибегает все возможные значения, то совокупность подобных окружностей образует область, ограниченную отрезками этих прямых и дугой наибольшей аберрационной окружности (рис. 3.3). Размеры получающейся области линейно возрастают с увеличением расстояния точки предмета от оси системы. При выполнении условия синусов Аббе система дает резкое изображение элемента плоскости предмета, расположенного в непосредственной близости от оси. Следовательно, в этом случае разложение функции аберрации не может содержать члены, линейно зависящие от. Отсюда вытекает, что если условие синусов выполняется, первичная кома отсутствует.

Астигматизм () и кривизна поля ()

Аберрации, характеризующиеся коэффициентами С и D, удобнее рассматривать совместно. Если все остальные коэффициенты в (8) равны нулю, то

Чтобы продемонстрировать важность таких аберраций, предположим вначале, что пучок, формирующий изображение, очень узок. Согласно § 4.6 лучи такого пучка пересекают два коротких отрезка кривых, одна из которых (тангенциальная фокальная линия) ортогональна меридиональной плоскости, а другая (сагиттальная фокальная линия) лежит в этой плоскости. Рассмотрим теперь свет, исходящий от всех точек конечной области плоскости предмета. Фокальные линии в пространстве изображения перейдут в тангенциальную и сагиттальную фокальные поверхности. В первом приближении эти поверхности можно считать сферами. Пусть и -- их радиусы, которые считаются положительными, если соответствующие центры кривизны расположены по ту сторону от плоскости изображения, откуда распространяется свет (в случае, изображенном на рис. 3.4. и).

Радиусы кривизны можно выразить через коэффициенты С и D . Для этого при вычислении лучевых аберраций с учетом кривизны удобнее использовать обычные координаты, а не переменные Зайделя. Имеем (рис. 3.5)

где u - малое по величине расстояние между сагиттальной фокальной линией и плоскостью изображении. Если v - расстояние от этой фокальной линии до оси, то


если еще пренебречь и по сравнению с, то из (12) находим

Аналогично

Запишем теперь эти соотношения через переменные Зайделя. Подставляя в них (2.6) и (2.8), получим

и аналогично

В последних двух соотношениях можно заменить на и тогда, используя (11) и (6), получим

Величину 2С + D обычно называют тангенциальной кривизной поля , величину D -- сагиттальной кривизной поля , а их полусумму

которая пропорциональна их среднему арифметическому значению,-- просто кривизной поля .

Из (13) и (18) следует, что на высоте от оси расстояние между двумя фокальными поверхностями (т.е. астигматическая разность пучка, формирующего изображение) равно

Полуразность

называется астигматизмом . В отсутствие астигматизма (С = 0) имеем. Радиус R общей, совпадающей, фокальной поверхности можно в этом случае вычислить с помощью простой формулы, в которую входят радиусы кривизны отдельных поверхностей системы и показатели преломления всех сред.

Дисторсия ()

Если в соотношениях (8) отличен от нуля лишь коэффициент Е , то

Поскольку сюда не входят координаты и, отображение получится стигматическим и не будет зависеть от радиуса выходного зрачка; однако расстояния точек изображения до оси не будут пропорциональны соответствующим расстояниям для точек предмета. Эта аберрация называется дисторсией.

При наличии такой аберрации изображение любой прямой в плоскости предмета, проходящей через ось, будет прямой линией, но изображение любой другой прямой будет искривленным. На рис. 3.6, а показан предмет в виде сетки прямых, параллельных осям х и у и расположенных на одинаковом расстоянии друг от друга. Рис. 3.6. б иллюстрирует так называемую бочкообразную дисторсию (Е>0 ), а рис. 3.6. в - подушкообразную дисторсию (Е<0 ).


Рис. 3.6.

Ранее указывалось, что из пяти аберраций Зайделя три (сферическая, кома и астигматизм) нарушают резкость изображения. Две другие (кривизна поля и дисторсия) изменяют его положение и форму. В общем случае невозможно сконструировать систему, свободную как от всех первичных аберраций, так и от аберраций более высокого порядка; поэтому всегда приходится искать какое-то подходящее компромиссное решение, учитывающее их относительные величины. В некоторых случаях аберрации Зайделя можно существенно уменьшить за счет аберраций более высокого порядка. В других случаях необходимо полностью уничтожить некоторые аберрации, несмотря на то, что при этом появляются аберрации других типов. Например, в телескопах должна быть полностью устранена кома, потому что при наличии ее, изображение будет несимметричным и все прецизионные астрономические измерения положения потеряют смысл. С другой стороны, наличие некоторой кривизны поля и дисторсии относительно безвредно, поскольку от них можно избавиться с помощью соответствующих вычислений.

оптический аберрация хроматический астигматизм дисторсия

Принято рассматривать для пучка лучей, выходящего из точки предмета, расположенной на оптической оси. Однако, сферическая аберрация имеет место и для других пучков лучей, выходящих из точек предмета, удаленных от оптической оси, но в таких случаях она рассматривается как составная часть аберраций всего наклонного пучка лучей. Причём, хотя эта аберрация и называется сферической , она характерна не только для сферических поверхностей.

В результате сферической аберрации цилиндрический пучок лучей, после преломления линзой (в пространстве изображений) получает вид не конуса, а некоторой воронкообразной фигуры, наружная поверхность которой, вблизи узкого места, называется каустической поверхностью. При этом изображение точки имеет вид диска с неоднородным распределением освещённости, а форма каустической кривой позволяет судить о характере распределения освещённости. В общем случае, фигура рассеяния, при наличии сферической аберрации, представляет собой систему концентрических окружностей с радиусами пропорциональными третьей степени координат на входном (или выходном) зрачке.

Расчётные значения

Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .

Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

  • 2h 1 - диаметр отверстия системы;
  • a" - расстояние от системы до точки изображения;
  • δs" - продольная аберрация.

Для объектов расположенных в бесконечности

Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

Уменьшение и исправление

В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки» , находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния) . Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю. То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации. Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

Обычно сферическую аберрацию устраняют для одного значения высоты h 0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте h e определяемой по простой формуле

Остаточная сферическая аберрация приводит к тому, что изображение точки так и не станет точечным. Оно останется диском, хотя и значительно меньшего размера, чем в случае не исправленной сферической аберрации.

Для уменьшения остаточной сферической аберрации часто прибегают к рассчитанному «переисправлению» на краю зрачка системы, придавая сферической аберрации краевой зоны положительное значение (δs" > 0). При этом, лучи, пересекающие зрачок на высоте h e , перекрещиваются ещё ближе к точке фокуса, а краевые лучи, хотя и сходятся за точкой фокуса, не выходят за границы диска рассеяния. Таким образом, размер диска рассеяния уменьшается и возрастает его яркость. То есть улучшается, как детальность, так и контраст изображения. Однако, в силу особенностей распределения освещённости в диске рассеяния, объективы с «переисправленной» сферической аберрацией, часто, обладают «двоящим» размытием вне зоны фокуса.

В отдельных случаях допускают значительное «переисправление». Так, например, ранние «Планары» фирмы Carl Zeiss Jena имели положительное значение сферической аберрации (δs" > 0), как для краевых, так и для средних зон зрачка. Это решение несколько снижает контраст при полном отверстии, но заметно увеличивает разрешение при незначительном диафрагмировании.

Примечания

Литература

  • Бегунов Б. Н. Геометрическая оптика, Изд-во МГУ, 1966.
  • Волосов Д. С., Фотографическая оптика. М., «Искусство», 1971.
  • Заказнов Н. П. и др., Теория оптических систем, М., «Машиностроение», 1992.
  • Ландсберг Г. С. Оптика. М.,ФИЗМАТЛИТ, 2003.
  • Чуриловский В. Н. Теория оптических приборов, Л., «Машиностроение», 1966.
  • Smith, Warren J. Modern optical engineering, McGraw-Hill, 2000.

Wikimedia Foundation . 2010 .

Физическая энциклопедия

Один из типов аберраций оптических систем (См. Аберрации оптических систем); проявляется в несовпадении Фокусов для лучей света, проходящих через осе симметрическую оптическую систему (линзу (См. Линза), Объектив) на разных расстояниях от … Большая советская энциклопедия

Искажение изображения в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы. * * * СФЕРИЧЕСКАЯ… … Энциклопедический словарь

сферическая аберрация - sferinė aberacija statusas T sritis fizika atitikmenys: angl. spherical aberration vok. sphärische Aberration, f rus. сферическая аберрация, f pranc. aberration de sphéricité, f; aberration sphérique, f … Fizikos terminų žodynas

СФЕРИЧЕСКАЯ АБЕРРАЦИЯ - См. аберрация, сферическая … Толковый словарь по психологии

сферическая аберрация - обусловлена несовпадением фокусов лучей света, проходящих на разных расстояниях от оптической оси системы, приводит к изображению точки в виде кружка разной освещенности. Смотри также: Аберрация хроматическая аберрация … Энциклопедический словарь по металлургии

Одна из аберраций оптических систем, обусловленная несовпадением фокусов для лучей света, проходящих через осесимметричную оптич. систему (линзу, объектив) на разных расстояниях от оптической осы этой системы. Проявляется в том, что изображение… … Большой энциклопедический политехнический словарь

Искажение изображения в оптич. системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптич. оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы … Естествознание. Энциклопедический словарь

Рис.1 Иллюстрация недоисправленных сферической аберрации. Поверхрность на периферии линзы имеет фокусное расстояние короче, чем в центре.

Большинство фотографических объективов состоят из элементов со сферическими поверхностями. Такие элементы относительно легко изготовить, но их форма неидеальна для формирования изображения.

Сферическая аберрация - это один из дефектов при формировании изображения, возникающий из-за сферической формы линзы. Рис. 1 иллюстрирует сферическую аберрацию для положительной линзы.

Лучи, которые проходят сквозь линзу дальше от оптической оси, сфокусированы в позиции с . Лучи, которые проходят ближе к оптической оси, сфокусированы в позиции a , они находятся ближе к поверхности линзы. Таким образом положение фокуса зависит от места, в котором проходят лучи сквозь линзу.

Если краевой фокус ближе к линзе, чем осевой фокус, как происходит с положительной линзой Рис. 1, тогда говорят, что сферическая аберрация недоисправленная . И наоборот, если краевой фокус находится за осевым фокусом, то говорят, что сферическая аберрация переисправленная .

Изображение точки, сделанное объективом со сферическими аберрациями обычно получаются точками, окруженными ореолом света. Сферическая аберрация обычно проявляются на фотографиях смягчением контраста и размытием мелких деталей.

Сферическая аберрация однородна по полю, это значит, что продольный фокус между краями линзы и центром не зависит от наклона лучей.

Из Рис.1 кажется, что на линзе со сферической аберрацией невозможно добиться хорошей резкости. В любом положении сзади линзы на светочувствительном элементе (пленка или матрица) вместо четкой точки будет проецироваться диск размытия.

Тем не менее, существует геометрически "лучший" фокус, который соответствует диску наименьшего размытия. Это своеродный ансамбль световых конусов имеет минимальное сечение, в положении b .

Смещение фокуса (Focus shift)

Когда диафрагма находится за линзой, наблюдается интересное явление. Если диафрагма прикрыта таким образом, что срезает лучи на периферии линзы, то фокус сдвигается вправо. При сильно прикрытой диафрагме наилучший фокус будет наблюдаться в положении c , то есть положения дисков наименьшего размытия при прикрытой диафрагме и при открытой диафрагме будут различаться.

Чтобы получить наилучшую резкость на прикрытой диафрагме, матрица (пленка) должна размещаться в положении c . Этот пример четко показывает, что существует вероятность того, что наилучшая резкость не будет достигнута, поскольку большинство фотографических систем рассчитываются на работу с открытой диафрагмой.

Фотограф фокусируется при полностью открытой диафрагме, и проецирует на матрицу диск наименьшего размытия в позиции b , затем при съемке диафрагма автоматически закрывается до установленного значения, и он ничего не подозревает о последующем в этот момент сдвиге фокуса , что не позволяет ему добиться наилучшей резкости.

Конечно, прикрытая диафрагма уменьшает сферические аберрации также и в точке b , но все же в ней будет не наилучшая резкость.

Пользователи зеркальных фотоаппаратов могут закрыть диафрагму для предварительного просмотра , чтобы сфокусироваться при реальной диафрагме.

Автоматическую компенсацию смещения фокуса предложил Норман Гольдберг. Фирма Zeiss запустила линию дальномерных объективов для фотоаппаратов Zeiss Ikon, которые имеют специально разработанную схему для минимизации смещения фокуса с изменением значений диафрагмы. При этом сферические аберрации у объективов для дальномерных фотоаппаратов существенно снижаются. Вы спросите насколько смещение фокуса существенно для объективов дальномерных фотоаппаратов? По заявлению производителя объектива LEICA NOCTILUX-M 50mm f/1, это значение порядка 100 мкм.

Характер размытия вне зоны фокуса

Влияние сферических аберраций на изображение в фокусе трудно различить, но их можно четко увидеть в изображении, которое находится в легком расфокусе. Сферическая аберрация оставляет видимый след в зоне нерезкости.

Возвращаясь к Рис.1 можно отметить, что распределение интенсивности света в диске размытия при наличии сферической аберрации не является равномерным.

В положении c диск размытия характеризуется яркой сердцевиной, окруженной слабым ореолом. В то время как диск размытия в положении a имеет более темную сердцевину, окруженную ярким кольцом света. Такие аномальные распределения света могут проявляться в зоне нерезкости изображения.

Рис. 2 Изменения размытия перед и за точкой в фокусе

Пример на Рис. 2 показывает точку в центре кадра, снятую в режиме макро 1:1 объективом 85/1.4, установленным на макромех. Когда матрица находится на 5 мм сзади наилучшего фокуса (точка посредине), диск размытия показывает эффект яркого кольца (левое пятно), подобные диски размытия получаются у зеркально-менисковых объективов.

А когда матрица находится на 5 мм впереди наилучшего фокуса, (т.е. ближе к объективу), характер размытия изменился в сторону яркого центра, окуженного слабым ореолом. Как видно, у объектива переисправлена сферическая аберрация, поскольку он ведет себя противоположно примеру на Рис. 1.

Следующий пример иллюстрирует действие двух аберраций, на изображениях вне фокуса.

На Рис. 3 изображен крестик, который сфотографирован по центру кадра, тем же объективом 85/1.4. Макромех вытянут примерно на 85 мм, что дает увеличение примерно 1:1. Фотоаппарат (матрица) перемещался с шагом 1 мм в обе стороны от максимального фокуса. Крестик является более сложным изображением чем точка, а показатели цвета дают наглядные иллюстрации его размытий.

Рис. 3 Цифры на иллюстрациях указывают на изменения дистанции от объектива до матрицы, это миллиметры. камера двигается от -4 до +4 мм с шагом 1 мм от положения наилучшего фокуса (0)

Сферическая аберрация отвечает за жесткий характер размытия при отрицательных расстояниях и за переход к мягкому размытию при положительных. Также интерес представляют цветовые эффекты, которые возникают из-за продольной хроматической аберрации (осевой цвет). Если объектив плохо собран, то сферическая аберрация и осевой цвет это единственные аберрации, которые проявляются в центре изображения.

Чаще всего сила а иногда и характер сферической аберрации зависит от длинны волны света. В таком случае совместное воздействие сферической аберрации и осевого цвета называется . Из этого становится ясно, что явление, проиллюстрированное на Рис. 3 показывает, что данный объектив не предназначен для использовании в качестве макрообъектива. Большинство объективов оптимизированы для использования в ближнем поле фокусировки а также для фокусировки на бесконечность, но не для макро 1:1. При таком приближении обычные объективы будут вести себя хуже чем макрообъективы, которые используются специально на ближних дистанциях.

Тем не менее, даже если объектив используется для стандартного применения, сферохроматизм может проявляться в зоне нерезкости при обыкновенной съемке и влиять на качество .

Выводы
Конечно, иллюстрация на Рис. 1 является преувеличением. В реальности количество остаточных сферических аберраций в фотографических объективах мало. Этот эффект значительно уменьшен благодаря комбинированию элементов объектива в следствии чего компенсируются суммы противоположных сферических аберраций, использованию высококачественного стекла, тщательно продуманной геометрией линз и использованием асферических элементов. Кроме того, могут быть использованы плавающие элементы для уменьшения сферических аберраций в определенном диапазоне рабочих расстояний.

В случае объективов, с недоисправленой сферической аберрацией эффективный способ улучшить качество изображения это прикрыть диафрагму. Для недоисправленного элемента на Рис. 1 диаметр дисков размытия уменьшается пропорционально кубу диаметра диафрагмы.

Эта зависимость может отличаться для остаточных сферических аберраций в сложных схемах объективов, но, как правило закрытие диафрагмы на одну ступень уже дает заметное улучшение изображения.

Альтернативно, вместо того, чтобы бороться со сферической аберрацией, фотограф может намеренно ее использовать. Смягчающие фильтры Zeiss, несмотря на плоскую поверхность добавляют в изображение сферические аберрации. Они популярны среди фотографов-портретистов для получения софт-эффекта и импрессивного характера изображения.

© Paul van Walree 2004–2015
Перевод: Иван Косареков